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The light-scatter technique facilitates study of the concentration field when one 
of the streams entering a mixing region is marked with colloidal particles. The 
present paper provides basic information for the effective application of the 
technique. The system response is analysed theoretically. The problems of noise 
and spatial resolution are examined and experimental data are presented 
from which the response parameters are evaluated numerically. The capabilities 
of the technique for characterizing turbulent concentration fluctuations are 
described. The technique is excellent in the convection region of the turbulence 
spectrum but fails where molecular diffusion is important. 

1. Introduction 
The light-scattering property of colloidal dispersions can be utilized for the 

detection of concentration fluctuations accompanying turbulent mixing. In the 
initial study Rosensweig, Hottel & Williams (1961) investigated isothermal air- 
air free jet mixing in which the nozzle fluid was an oil/air smoke. Subsequent 
work has dealt with free and confined jet mixing (Becker, Hottel &Williams 1963, 
1965,1967; Williams & Becker 1963), turbulent dispersion in a pipe flow (Becker, 
Rosensweig & Gwozdz 1966), mixing in the well-stirred reactor (Hottel, Williams 
& Miles 1967), and temperature-induced concentration fluctuations in a turbu- 
lent flame (Gurnitz 1966). Since the technique provides a powerful tool for in- 
vestigating turbulence and mixing, the present paper presents the theory and 
measurements essential to indicate its capabilities and limitations. 

The principle of the technique is illustrated in figure 1. One of the streams enter- 
ing a mixing field is marked with a sol (in gases, a smoke or fog). Light scattered 
by the sol from a beam projected into the field is intercepted by an optical system 
at one side and focused on a slitted diaphragm. The slit passes to a phototube 
the light scattered from a short segment of the incident beam. The electrical 
signal thereby produced is ideally proportional to the amount of sol in the de- 
fined control volume, and, when that volume is small enough, to the point con- 
centration. The response of the phototube is linear in light flux in the normal 
range of loading and up to ca. 108 c/s. Thus the problems of non-linearity which 
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complicate most methods of turbulence study are absent. However, the technique 
has other difficulties and limitations, the description and analysis of which 
follows. 

I 

FIGURE 1. The principle of the light-scatter technique. M ,  mixing field; I ,  incident beam; 
S, scattered-light beam; D, slitted diaphragm; L, lens system; I’, scattered-light image of 
incident beam on diaphragm ; P, multiplier phototube ; K,  photocathode. 

2. The phototube response 
The phototube response to scattered light 

When light of spectral intensity 4 irradiates a spherical particle through a soIid 
angle dwi, the energy flux scattered into a solid angle dw, in a direction at angle 8 
to the incident beam is 

(1) 

where D, and np are the particle diameter and index of refraction, and 
$7~0; Jidhdwi is the flux incident on the particle in a wavelength interval dh.  

f ~ D ~ d w i d w , ~ o w  $(mD,/h, 8, n,) @A, 
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For wavelengths large relative to the particle perimeter, h > lOn-D,, the scatter 
function $ is given by Rayleigh’s law: 

When the wavelength is small, $ tends to be independent of D, and A. In  general 
@is given by Mie’s equations (see the book by Van de Hulst (1957) and numerical 
solutions by Gucker & Cohn (1953) and Erickson (1961)). 

Under normal conditions for the light scatter technique, the flux scattered from 
a small fixed spatial region or control volume V by the N like particles which are 
momentarily inside it is N times that scattered by one particle. The spectral 
intensity of the incident light approximates 

Ji= JorLrlri, 

where J ,  is the source intensity (the radiant flux leaving the lamp arc or filament 
in the direction of projection per unit of arc or filament surface per steradian), 
and rL, r1 and ri are the spectral transmissivities of the lamp window, the pro- 
jection optics, and the interposed region of the mixing field. The energy flux 
incident on the phototube cathode is then 

where r8, r2 and r p  are the spectral transmissivities of the mixing field along the 
scattered beam, the viewing optics, and the phototube window; mi and us are the 
solid angles of divergence of the incident and scattered beams; and $av is the 
average of @ over oi and w,. The resulting anode current response of the photo- 
tube is 

I = sj-omsK@KaA g ; s @ p d h ,  (4) 

where sE is the spectral sensitivity of the photocathode, A is the over-all gain 
of the multiplier stages of the phototube, s = AsKrp is the overall radiant sensi- 
tivity of the phototube, and Op = is the cathode-directed spectral energy 
flux incident on the phototube window. A typical spectral response characteristic 
(the graph of s us. A )  is usually included in manufacturer’s literature on photo- 
tubes. Data are also available on most lamps of interest giving the spectrum of the 
leaving radiation in the normal direction of projection. Thus, when the system 
characteristic r1r2 is known as a function of wavelength, it is possible to compute 
the magnitude of the output signal from theory. However, the chief practical 
value of the above equations is to guide the optimization of performance. 

The scattered-light technique may be used directly to study the concentration 
field of the marking material, and indirectly to study the concentration field 
of the material of the marked stream. In either case the desired information is 
partly obscured by superimposed noise, the important types of which will now 
be considered. 
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Optical attenuation noise 

The signal-attentuating effects of absorption and scatter along the optical path 
through the mixing field are lumped by joining (3) and (4) to give 

where 72111 is the over-all transmissivity of the mixing field, defined as the ratio 
between the actual response of the phototube and the response in the absence 
of intervening absorption and scatter. 7*i generally varies with the position of 
the object control volume in the mixing field and is moreover modulated by 
concentration fluctuations along the optical path. Consequently the signal- 
reducing response component I( 1 - 7 m f ) / 7 m ~  is a complex noise which should be 
minimized to a degree consistent with over-all optimization. 

Practically, the condition 1 - 7m1 < 1 is easily tested for by projecting a beam 
through the mixing field and observing the modulation of the emergent beam by 
the presence of the marker. In  our work to date it has always been possible to 
operate at  low enough marker concentrations so that optical attenuation noise 
was a negligible factor. 

Optical background noise 

The possible causes of optical background noise are: (i) light from extraneous 
sources; (ii) stray light from the exciting lamp, light from the incident beam, 
and scattered light from the mixing field, all reflected from the surroundings; 
(iii) rescatter of scattered light in the mixing field; and (iv) emission from the 
mixing field, as in flames. In  laboratory situations it is usually not difficult to 
block extraneous sources and to adequately blacken the surroundings. Re- 
scatter should not give trouble if the optical attenuation noise is negligible, 
1 - 7 m f  < 1. Emission by the mixing field can be coped with by using a lamp, 
usually the mercury arc, which radiates strongly in a different part of the spec- 
trum together with appropriate filters and optical components. 

A quantitative accounting is possible if the anode currents 1, and Is produced 
by the background radiation and by light scattered from the object control 
volume are statistically steady. The total mean response is then 1 = Is+Ib. 
The mean squares of the fluctuations is = .&-Is and ib = &-Ib are directly 
additive if the fluctuations are uncorrelated; iz = c+g if < 2 or iz where 
i = f - I .  

Background radiation can be characterized by studying the phototrans- 
ducer response (i) with the incident beam off, and (ii) with the incident beam on, 
but with the control volume screened from view. 

- 

Source Jluctuation noise 
If the object is to characterize concentration fluctuations then it is desirable that 
the source intensity be a constant. Suppose a significant fixed level of ripple and 
random fluctuation is however present. The source spectral intensity J, is written 

J, = &+j, = J , ( l+P) ,  (6) 
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where j ,  is the fluctuating component, to be regarded as noise, and /3 =j,,/& 
should be virtually the same for all light wavelengths if the ripple is small. 
The incorporation of the factor 1 + /3 into the over-all phototube response will be 
considered later. 

In  some applications modulation or chopping of the incident beam may be 
desirable, e.g. in order to separate the signal from background noise. The treat- 
ment of the results is straightforward and will not be considered here. 

Dark noise 

The phototube current produced by spurious mechanisms, chiefly thermal emis- 
sion, is normally independent of the light flux on the photocathode and is there- 
fore called the dark current. The resultant noise is usually a negligible factor in 
the scattered-light technique. If need be, thermal emission can be suppressed by 
refrigerating the phototube. A mu-metal shield for magnetic screening is helpful. 

Marker shot noise 

The number of sol particles in the object control volume V ,  while usually great, 
may yet not be so large as to completely validate the assumption of a marker 
continuum. The particulate nature of the marker then comes into evidence 
through a random fluctuation or ‘shot’ noise. 

Suppose that, at an instant when the number of sol particle sin B is N ,  the 
number which would portray continuum or large-population behaviour is 8. If 

is a region in a thoroughly mixed or ‘uniformly marked’ steady stream, then 
# is simply fl, the time-mean number of particles in V .  In  a turbulent mixing 
field, however, both N and 8 fluctuate, with # following the turbulent fluctua- 
tions and N - # the excursions from continuum behaviour. Suppose a statistic- 
ally large number of simultaneous determinations of N and # is made, and focus 
attention on those values of 8 lying in a small range diV. With N following the 
Poisson distribution, the mean-square ensemble average of N - # is 

The value of 8 is in the prescribed range for a fraction of time d x .  The time- 
average of (N - #)2 is therefore 

( ( N  - 8 ) 2 )  = 8. 

Thus the relative mean-square fluctuation level introduced into the system re- 
sponse by the particulate nature of the marker is, as reported by Rosensweig 

( N - R y  1 et al. (1961), 
- _  - 

z2 x. (71 

To a first approximation, the variation in N is attributable to the translation 
of a frozen concentration pattern through the control volume V at the local mean 
velocity D. The average time taken by particles to move through V is 
At = n-D/4D, where D is the diameter of the object segment of the incident light 
beam. Consequently each instantaneous sampling of the contents of V is roughly 
equivalent to a measurement of the transport of particles into V over a sampling 
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time At. Further, if each time record of N and 8 is representable by a Fourier 
series, arunning record of the input into V over periods At is equivalent to record- 
ing the flux into V as a function of time through a low-pass filter of bandwidth 
Afv = l / 2At  g 2i77/7~D (the factor 2 comes from the fact that the pass band ex- 
tends mathematically from 0 - Afv to 0 + AfF7; see, for example, Bendat (1958)) .  
For the noise in a band from f to f + Af,  with f + Af < AfF7, we can thus write, 
from (7), 

(8 )  
7TD - N - f i ) 2  (N-m21f,.f _ _  ( 

w 2 A f  N2Afv  2 ( N / V ) V E '  

This shows how the relative spectral density function of N - 3 varies with operat- 
ing conditions. 

Marker shot noise has not been detected in experiments to date, even when 
sought: the effect has always been masked by electronic shot noise, discussed in 
the following section. It is interesting that, in principle at  least, the study of 
marker shot noise affords a sound method for determining particle number 
concentration in sols. 

Electronic shot noise 

Because of its particulate nature every electric current exhibits a fluctuation 
noise, commonly called electronic shot noise. Suppose the number of electrons 
emitted by a phototube cathode in an interval At is n, whereas the number that 
would have been emitted in the absence of fluctuation noise is fi. By the argu- 
ments of the preceding section 

Division of both sides by (At)z and multiplication by the electronic charge 
squared, e2, transforms this to 

= 12. 

(& - = eJK/At, 
where I, is the cathode current. Suppose At is defined by a low-pass filter of 
bandwidth Af;  we have At = l / 2 A f .  Then 

Except for the substitution of f for r on the l.h.s., this is the well-known formula 
for electronic shot noise; see, for example, Parker (1950).  

The multiplier stages of the phototube amplify the cathode shot noise, carrying 
through statistically unchanged the relative noise level 

However, more noise appears at  each stage, in consequence of which the mean- 
square shot noise associated with the anode or ultimate output current IA is 
(Philips Electron Tube Division 1964 Philips Photomultiplier Tubes. Holland) 

where A ,  is the amplification factor per stage. Since A ,  is usually about 5, 
- 

z A N p -  '2 2-5eAf 2.5AeAf 
- - 

1% fK 'A ' 
( 9 )  
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where A is the over-all gain. Thus about 80% of the noise originates at the photo- 
cathode, where the current is smallest. 

Rearrangement of (9) shows that the spectral density function of the relative 
shot noise level approximates 

The relative shot noise level must be adequately low in the scattered-light 
technique. Equations (9) and (10) suggest the desirability of making the photo- 
cathode current large and of filtering the signal to reject noise from outside the 
turbulent frequency range when measuring the total intensity of concentration 
fluctuations and similar integral statistical quantities. 

It is of interest that shot noise is random or 'white'; i.e. the spectral density is 
independent of frequency. Thus the noise generated by a steadily illuminated 
phototube has been useful in our work for calibrating filters and wave analysers. 
Through (9) it  has also been used to determine the over-all phototube gain, A. 

The total phototube response 

All ordinarily significant components of the phototube response have now been 
considered. Collecting these gives for the mean anode current 

1, = 1, f I b  + f d ,  (11 )  

where 1, and 1, are the mean responses to light scattered from the object control 
volume and to background radiation, and I d  is the mean dark current. From (4) 
and (51, 

Is = t n - ~ D ~ 0 ) ~ 0 ~ ~ ~ ~ " ~ ~ ~ r ~ 7 ~ r ~  Jodh. (12 )  

The mean-square fluctuating current in a frequency interval from f to f + Af is 
- _ _ _  

8 1 f ,  A f  = (is" + if + i: + i&sm f i&) 1 f ,  A f ,  (131 

where the terms on the r.h.s. represent the turbulent fluctuations in the con- 
tinuum-wise marker content of the control volume, the ripple in the light source, 
the fluctuation in the background radiation (assumed statistically independent 
ofz) ,  the marker shot noise, and the electronic shot noise. Prom the results in the 
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To illustrate practical orders of magnitude, consider the signals developed 
through a low-pass filter with a bandwidth of 20,000 c/s, passing all turbulence 
frequencies in a case of interest. In  a turbulent jet, the minimum magnitude of 
(8- B)2/B2is on the order of 0.05. For a lamp with 1 % r.m.5. ripple, pz = 0.0001. 
The phototube anode current may be on the order of lOpA and the over-all 
gain A = 106: the mean-square relative electronic shot noise level in Af = 
2O,OOOc/s is then given by (17) (in which e = 1.6 x 10-19coulomb) as ca. 0.001 
(assuming I A  2: Ts). If = 30 m/sec and D = 1 mm, then the marker shot noise 
is given by (7) ,  in which 1/m = 0.001 when w = 1000. If V c1 D3, then 1 = 1000 
when m/ V = 106 particles/cm3. 

3. Marker adequacy 
Colloidal particles used as markers must have small inertia and small tendency 

to evaporate, sublime, coagulate, or react chemically. 
Small inertia is measured by the ability to follow the stream motion through 

sinusoidal velocity fluctuations of frequency f. The velocity amplitude ratio for 
a spherical particle acted on by the Stokes drag with the Cunningham correction 

u'/u = 1/[1+ (2pf/a)2]l", 
is easily shown to be 

where a is 18,u/ppDi(l + KZ/Dp), u' and u are the r.m.s. velocities of the particle 
and the gas, 1 is the molecular mean free path of the gas, and K is the Cunningham 
constant (1.8 for air). Consider particles of density 1 g/cm3in air at  ordinary tem- 
perature and pressure ( 1  = 10-5cm, p = 1.9 x 10-4g/cmsec). The frequencies at  
which the velocity amplitude response is down 10% (i.e. u'/u = 0.9) for particles 
of different sizes are: 

Dp (mm x 103) 0.1 0.3 1 3 10 
f 930,000 180,000 22,000 2700 250 

In  work to date, the turbulence energy has been concentrated in frequencies 
below lO,OOOc/s ,  and the oil smokes used can be considered satisfactory if the 
particle size was below 2 microns. The Stokes diameter found by Rosensweig 
et al. (1961) was 0.5 microns. 

The rate of evaporation of small droplets is set by molecular diffusion, and is 
proportional to the surface area. The theory of Langmuir (1918) gives 

where M and p are the molecular weight and vapour pressure of the droplet 
liquid, a n d 9  andp,, are the vapour diffusivity and partial pressure in the ambient 
gas. The vapour pressure p is affected by surface curvature: 

4uM 
= exp [ p p  Dp RT] ' 

where po is the normal vapour pressure and u is the surface tension of the liquid. 
For the oil used in our work (Nolan 1946) lnpo = 25-5-  8220/T, where p" is in 



The light-scatter technique 267 
dyneslcm2 and T in OK. For droplets larger than 0.1 micron diameter, the surface 
curvature is unimportant. The diffusivity of the vapour in air a t  300’K is 
0.03 cmZ/sec, based on values quoted by Nolan (1946). Taking H = 250 g/mole, 
pp = 0.9 g/cm3, and Dp = 0.4 x em, Rosensweig et aZ. calculate the initial 
percentage rate of decrease of the particle diameter from (19) as 5% per sec. This 
is negligible in terms of the residence times (on the order of 0.01 to 1 see) in 
systems studied to date. 

Coagulation affects the particle size and number. For spherical liquid droplets 
the total mass m of particles inside the control volume V is nppDiN/6. This rela- 
tion together with (3) and (4) indicates a signal strength I, proportional to 
m@av/Dp. For small particles (Rayleigh scatter) @ is proportional to D:, and 
the signal is proportional to 0,”. For large particles, on the other hand, @ + f ( D p )  
and the signal is inversely proportional to Dp. 

In  practice coagulation by Brownian collisions can be studied by putting sol 
in a cell and observing the change in the scattered-light signal with time. The 
coagulation of aerosols often follows a second-order rate expression (Whytlaw- 
Gray & Patterson 1932), 

- krN2/V .  (19) 
dN 
at 

-- - 

The rate constant kT for spherical particles which coagulate a t  contact is given by 
Smoluchowski’s (1926) theory with the Cunningham correction as 

kr = +kT( 1 + KI/D,)/p, 
where k is Boltzmann’s constant, T the absolute temperature,andp the viscosity 
of the suspending medium. With these expressions for the coagulation rate, 
(3) and (4), and the relation N = 6?n/nppDg, it may be shown that for small 
particles (predominantly Rayleigh scatter) 

a4 Kl 

dt % ’ 
-c,-Cc+- 

while for large particles - 

Thus I, increases with time at  a diminishing rate for small particles, but decreases 
with time at a diminishing rate for large particles. 

The variation of I, with time facilitates a particle diameter classification ac- 
cording to whether I, increases, decreases, or remains essentially constant. The 
regime of near constancy is around nDJh = 4. For our oil smokes I, decreased 
very slowly with time: a 20% fall in 10 min was typical. Since residence times in 
fields of interest were under lsec, coagulation by Brownian collisions was 
clearly inconsequential. The central light wavelength, determined by the 
phototube, was ca. 0.5 micron. Since I ,  decreased with time, it appears that the 
particles were larger than A/277 = 0.1 micron diameter. An upper limit on size is 
independently set as follows: from the absence of detectable marker shot noise, 
it appears that the number concentration of particles was greater than 105 
particles/cm3. For the maximum mass concentration of ca. 10-5g/cm3, the upper 
limit on particle diameter is thus calculated to be 5 micron. This range, 0.1-5 
micron, brackets the experimental Stokes value of 0.5 micron. 
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It should be emphasized that the important coagulation effect is the variation 
in the signal I, with time, and not the number concentration or size of the par- 
ticles. I n  the above experiment the number concentration evidently decreased 
by Brownian collisions at about the same rate as I,: for particles of 0.5 micron 
diameter, 0.9 g/cm3 concentration, the percentage rate of decrease calculated 
from equation (19) is 0.4% per see, or about 25% in 10min. 

Collisions between particles are produced also by small-scale turbulent 
motions of the fluid. According to Saffman & Turner (1956), from turbulent col- 
lisions alone 

dN N2 (u2)+ 
at p v  A,  

. - = 2 n 2 & ~ 3  - --, 

where (u")* is the r.m.s. velocity fluctuation in an isotropic turbulence and A,  is 
the dissipation scale. For the jets investigated in our work, 

on the centre-line, where Uo and Do are the nozzle velocity and diameter 
and x is distance from the nozzle. Under the worst conditions studied, 
Uo = 13,000 cm/sec, Do = 0.6 cm and x = 10 em. With Dp = 0-5 x cm and 
N/V  = 106particles/cm3, dlnN/dt = 0.05sec-l. Since transit times from the 
nozzle to 40 em downstream (the zone of interest) were on the order of 0.01 see, 
this pessimistic calculation indicates that coagulation, even with the help of 
turbulence, was never significant. 

4. Flow disturbance 
As always, the system is disturbed by the act of observation. Particles in 

aerosols have been observed to move at speeds of several cmjsec in an intense 
light-beam (Whytlaw-Gray & Patterson 1933), but the effect isnegligible in most 
systems of interest. The assumption that the fluid viscosity and density are 
effectively unaltered by the presence of the marker is undoubtedly justified for 
the oil smokes used in work to date, the maximum concentration of oil being 
generally below 0.01 weight fraction. The marker may also affect the fluid 
properties through processes of evaporation, adsorption, etc. Calculations of 
simultaneous heat and mass transfer show that the thermal effects of evaporation 
in our oil smokes are quite negligible. 

5. Theory of the resolution of the point concentration 

control volume V can be written 
The response of the phototube to light scattered by particles inside the object 

for the mean and 
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for the mean-square turbulent fluctuation, where 

8 vu;Uss," S @ a v T 1 7 2 7 ~ J , d h  

is the over-all system sensitivity, 
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and 

The asterisk indicates identification with the marker particles; later we shall use 
r and y without asterisks to denote the concentration of material of the marked 
stream. Since the object of measurements is normally to characterize the point 
values of concentrations, the conditions will now be considered under which 
(20) and (21) approach the desired limits 

Is=/j'F* and z = / j ' 2 y * 2 .  

Clearly the requirement is to make the control volume V small. Since, however, a 
decrease in V by itself increases the relative level of every kind of noise, a prob- 
lem of optimization results. 

The mean marker concentration 

Suppose it is wished to measure the mean marker concentration I?* at a position 
x. Let ( be the distance along a line through x following the mean concentration 
gradient Vr* .  Expanding r* about 6 = 0 at  x in a Taylor series and neglecting 
terms higher than second order gives 

- 
ryf) = F*(x) +(F*'(x) + ~ F * " ( X ) .  

In work on jets, wakes, and diffusion plumes, the incident light-beam normally 
enters from the side of the flow and is directed parallel to Vr*, in which case (20) 
can be written 

where L is the length of the cylindrical control volume. Also F*" = V2F*. 
These expressions yield 

Thus Is is a linear measure of F* when L 2 V 2 F * ( x )  < 24F*(x). This condition, 
which means that the concentration profile must not show large curvature 
within the control volume, is usually easy to satisfy. 

1, = S[F*(x) +&!7V2F*(x)]. 
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Concentration $ uctuation 

The mean-square signal fluctuation in a frequency band from f to f + Af can be 
written, from (21), 

- 

% I f , A f  = $ [ / v . / * d v ] 2 1  f, A f  

where ./* '" ' ' I f, 4r is the correlation between concentration fluctuations in volume 
elements d V' and d V" located in V at positions x' and x", and C; Af(x', x") is the 
correlation coefficient. If the object is to resolve Y*21f,Al, the conditions for suffi- 
cient smallness of Tr are: (i) is essentially uniform over V ,  and (ii) 
C ~ a f ( x ' , ~ " )  is essentially unity for all pairs of points x' and x" within V .  Of 
these conditions, the second is the more stringent. We therefore suppose the first 
to be adequately satisfied (usually not difficult) and obtain for the attenuation 
factor on y"21 f, Af, 

__ __ 
Qf, A f  ?*'If, 4f/Y*21f, A f  

where 
n 

9* E J / * d V ,  

and r,  q5, x are cylindrical co-ordinates appropriate to the control volume of usual 
interest-of diameter D = 2R and length L. 

Equation (23 )  can be solved analytically in one limiting case, Suppose the 
correlation coefficient depends only on the separation distance 5, 

5 = [(r' cos q5' - Y" cos $")2 + (r' sin $' - r" sin $")2 + (2' - x")2]hq 

A series expansion about 5 = 0 gives the parabolic approximation 

cz A f ( 6 )  = - ac2* 
Equation (23)  then yields 

Qf,Af = 1-&a(L2++D2)- 

For our control volumes, L = 0.8D and 
& f , A f  = 1 - 0*323a02,, (26) 

where D, is the diameter of a sphere of volume V = nD2L/4. An LID value of 
unity gives 0.318 for the numerical coefficient so the result in this form is in- 
sensitive to mild variations in control volume shape. 

Numerical solutions of ( 2 3 )  for several forms of the correlation coefficient have 
been obtained on a digital computer and are presented together with experi- 
mental data in 8 6. 
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The spectral density function 

In the limit Af --f 0, equation (23 )  gives the volume attenuation factor on the 
frequency spectral density function, G*(f) ,  

G*( f )  = lim -. y*21 f , A  f 

Af+O Af 

The correlation coefficient is then that, C;, between concentration fluctuations 
of a single frequency. 

To a fair approximation, the concentration fluctuations in V can usually be 
regarded as due to the convection of a frozen concentration field through V at 
the mean stream velocity D. Then 

2 n  
G*( f )  _N E*(K),  

where E*(K)  is the one-dimensional wave-number spectral density function and 
K N 2 n f / a  is the wave-number component in the direction of mean motion. 
Equation (23), written for B*(K), then involves the correlation coefficient (7: 
between marker concentration fluctuations of wave-number K. For pairs of 
points separated only in the mean flow direction we should have (a single Fourier 
component) 

C: = COsKg. (27) 

For other points the field structure over all values of the transverse wave-number 
components affects the resu1t.t However, (27) should still afford a rough ap- 
proximation to the limit case of small separation distances, c-+ 0. The resulting 
value of a! in the parabolic approximation equation (24 )  is + K ~ .  The attenuation 
factor on E*(K) for our control volumes is then, from (26), 

Q, = 1 - 0.16~'O;. (28 )  

The total mean-square concentration jhctuation 

The total mean-square marker concentration fluctuation in all frequencies or 
wave-numbers is 

However, in the light-scatter technique volume-averaging 

(29) 

produces rapid 
attenuation of the spectral response at  large wave-numbers. Thus the measure- 
ment of y*2, as suggested by (28 ) ,  is effectively truncatedat awave-number on the 
order of K~ = l/Dv. Since there are practical limits on the diminution of the con- 

t In  a more general argument the wave-number component in the mean-flow direction, 
here denoted by K unadorned, would be written K ~ ,  and the transverse components, K~ 

and K,. 
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trol volume size, set by the increase in relative noise level, etc., a question arises 
as to the significance of the measurable quantity 

To answer this it is necessary to consider the form of the spectrum over all wave- 
numbers. 

It is an important characteristic of marker sols that the particle diffusivity 9* 
in the suspending medium is much smaller than the kinematic viscosity of the 
medium, v. Thus the effective Schmidt number of the particles is enormous, 
v / 9 *  > > > 1. The equilibrium spectrum of turbulent concentration fluctua- 
tions under this condition has been examined by Batchelor (1959) : the low wave- 
number end develops into a Kolmogoroff subrange in which the spectral density 
is proportional to K-Q. Then, at a wave-number on the order of (e/v3)$ (where E is 
the turbulence energy dissipation rate), beyond which the velocity eddies are 
rapidly dissipated by viscosity, the continuing insignificance of particle diffusion 
comes into evidence and transition takes place to a second convection subrange 
in which the spectral density varies as K - ~ .  Finally, at a wave-number on the 
order of ( ~ / v 9 * ~ ) $  the marker concentration eddies do begin to dissipate by 
particle diffusion, and from there on the spectral density falls rapidly. Thus, if it 
is desired to evaluate the total mean-square marker concentration7 as given by 
(29), the control volume cut-off wave-numberKv must be in the neighbourhood of, 
or larger than, the particle diffusion cut-off value for the ( -  1)-power subrange: 

It seems that y"2 would become infinite if the ( - 1)-power region extended 
upward without bound. Actually, as noted by Rosensweig (1959), a limit on? is 
independently set by the fact that at  any point in a turbulent field the straining 
of the marker continuum filaments and sheets can only have proceeded a finite 
way. If the initial uniform marker concentration in the marked stream is I?:, 
then in the absence of marker diffusion the concentration of the marker in por- 
tions of fluid containing i t  remains steadily F:. It is easily shown that then 

~ 

y*2 = W ( l - W f r ~ 2  

y*2/p*2 = (1 - W ) l @  
-- 

and 

where w is the volume fraction of marked fluid in the local mixture. 
In  systems studied to date the upper wave-number limit of the ( - 1)-power 

region of the spectrum has been utterly beyond reach, and it appears that no 
refinements are feasible which will allow the use of a small enough control volume 
to bring the very high wave-number region into focus and yet not lose the signal 
in noise. Indeed it has not yet been possible to detect even the beginning of the 
( -  1)-power convection subrange. The prospects are hopeful, however, and a 
future effort directed toward this goal may succeed. 
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Concentration jluctuations in the marked material 

The marker is normally chosen to follow as faithfully as possible the turbulent 
motions of the mixing fluids. To this extent it identifies the material of the marked 
stream. In isopycnic mixing 

where is the concentration of marked material and I?: and r0 are the initial 
uniform concentrations of marker and marked material in the marked stream 
at entry to the mixing field. 

Since the diffusivities of the marker particles and the molecules of the marked 
material differ widely, the ability of the marker to represent the concentration 
fluctuations of the marked material is limited to the wave-number range K < K, 

in which the fluctuations of both are in the convection ranges of their spectra. 
The limiting wave-number is determined by whichever species has the lower 
limit on its convection range, and is on the order of (based on the discussions of 
scalar-fluctuation spectra by Batchelor (1959) and Batchelor, Howells & 

ryr; = r/ro, 

(1959)) K, = ( ~ / 9 3 ) 4  i f 9  > v and 9 > 9*, 

K~ = (6/v9)$ if 9 < v and 9 > 9*, 

and (an artificial case) 

K, = (e/v9*2)4 if 9 < v and 9 < 9*, 

where B* and 9 are the diffusivities of the marker and the marked species. 
If, as is normally true, 9 > 9*, then the total mean-square fluctuation in the 

concentration of marked material in isopycnic mixing should be represented with- 
in 1% error by W 

= 1 E ( K ) d K  N %jK"E*(K)dK.  
0 G2 0 

To measure? by the scattered-light technique it is thus only necessary to put the 
marker fluctuation signal through a filter with a passband from 0 to K ~ .  This 
filtration can be provided either by an appropriate choice of control volume 
size or by a low-pass electronic filter operating on the phototube output. 

can be calculated 
from the effect on the spectrum: 

The effect of control volume size on the measurement of 

where 

It can also be calculated from ( 2 3 )  by setting f = 0 and Af = i!7Kc/2T. The correla- 
tion coefficient in (23) becomes that between concentration fluctuations in the 

1s Fluid Meoh. 30 
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marked material, namely C(x’, x”) = y’y”/y2. At the relatively small separation 
distances [ E Ix‘ - x’’] normally occurring within a properly sized control 
volume, C can be expected to depend primarily on [. At very small [, the para- 
bolic approximation, (24), might seem appropriate. However, the parabolic 
behaviour reflects the effects of molecular diffusion and these are masked in the 
light-scatter technique. The parabolic region is in any case usually very small. 
Thus a more realistic approximation is usually one of the forms 

-_  

where A is the longitudinal integral scale, discussed in fi 7, and a and b are con- 
stants. These forms should be reasonably accurate up to [ = &I, and should give 
good results if the control volume dimensions D and L are smaller than &A. 

Solutions for the attenuation factor on p f r o m  (23), (31) and (32) by the fore- 
going argument have been obtained on a digital computer and are presented to- 
gether with experimental results in § 6. 

6. Experimental studies on the resolution of concentration fluctuations 
Experiments were carried out to demonstrate the theoretical relations ob- 

tained in the preceding sections and establish completely quantitative correction 
procedures for the treatment of data. 

The light-scatter system 
An air-oil condensation smoke was used as a marker. The light source was a 
200 W zirconium arc lamp provided with five round apertures to control the beam 
diameter D in the object segment. Slitted diaphragms with three slit sizes placed 
before the phototube controlled the segment length L. 

The control volumes were geometrically similar to an adequate degree, with 
LID 2: 0.8, and are characterized as to scale by the equivalent spherical diameter 
D, = (6V/n-)*, where V = &n-DZL. The incident beam divergence angle wi was 
below 0.01 steradian and the scattered beam divergence us was about 0.2 stera- 
dian. The phototubes were selected for high cathode photosensitivity in order to 
minimize the relative electronic shot noise and dark noise levels (selection is 
important, for the variability is great). 

Xpectru ilz a free jet 
The marker concentration fluctuation spectrum in a round free jet of smoke- 
marked air mixing with clear room air at  uniform temperature was studied at  a 
point on the jet centre-line 64 nozzle radii from the nozzle at a nozzle Reynolds 
number Do U,/w of 54,000. The nozzle was a 0.635 ern throat diameter flow nozzle 
giving a uniform effluent velocity distribution. 

Spectra were measured with a sound analyser the passband of which is a con- 
stant fraction of the tuned frequency, nominally 0.04f or 0-l2f. The 0.12f band- 
width was used only in the initial white portion of the spectrum. The analyser 
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was calibrated against white noise. The analyser output was measured with a 
random signal voltmeter accurate to & 4 %. 

Figure 2 shows the measured spectra. The attenuation of the frequency re- 
sponse with increasing control volume diameter is very evident. At the high- 
frequency end the spectral density levels off at the electronic shot noise level 

lo-' 

h 
.3: 

a 5 
g 10-2 
* 

0 

m & 

lo-: 

10 

f (kc) 

100 

FIGURE 2. Spectra on the jet centre-line 64 nozzle radii from the nozzle mouth. Nozzle air 
velocity, 122 m/sec ; local mean velocity, 30.5 m/sec. Control volume diameter Dv = (6 V/n$ 
mm: 0, 0.85; 0, 1.01; 0, 1.64; A, 2.02; v, 2.25. At high frequencies the spectra level 
off at the random noise level, which was independently determined. The dashed curves 
represent the spectre with the random noise subtracted. 

associated with the mean phototube current. The noise spectral density is essen- 
tially frequency-independent (white), and is therefore easily subtracted from the 
total response. However, the remainder quickly becomes smaller than the sub- 
trahend and is lost in the experimental error. Thus the ultimate limit on the dis- 
crimination of marker concentration fluctuations in these experiments was not 
spatial resolution, but noise. 

18-2 
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The simplest theoretical expectation for the attenuation factor Q, on the 
spectral density function is that it should depend on KD,,. Thus, proceeding em- 
pirically, a semilogarithmic relation between the measured spectral density 
and 0; was found to be essentially linear at  all frequencies (figure 3). The slopes 

I 
r, ” r, 

I t v 2 

Dv (mm? 
FIGURE 3. The spectral density function (corrected for random noise) as a function of the 

control volume diameter at different frequencies. 

of the straight lines were then plotted on a log-log graph against ~2 (figure 4), 
and found to be fairly well described by the dimensionally homogeneous relation 
(slope) = - 0 .12~2 .  The resulting equat’ion for the spectral attenuation is 

&, = exp { - 0.1 ~ K ~ D ; ) ) .  

&, = 1 - O * I Z K ~ D ~ ,  

(33) 

(34) 

L4t small values of K D ~  this approaches 

in close agreement with the theoretical approximation for very small K D ~  
(equation (28)). 
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FIGURE 4. The slopes of the straight lines in figure 3 as a function of the 
wave-number squared. 

It may now be asked what directionally averaged representation of the correla- 
tion coefficient as a function of separation distance alone leads from the theoretical 
response (equation (23)), to the experimental result (equation (33)). We have de- 
termined that a close approximation is 

as shown by the following comparison: 

KDV 0.616 1.233 2.46 3.70 4.92 
Q K ,  experiment 0-955 0.834 0.483 0.193 0.054 
Q K ,  theory 0.955 0.834 0.470 0.161 0.023 

Figure 5 shows the spectrum for the smallest control volume, corrected €or 
both shot noise and volume attenuation. The first convection subrange, character- 
ized by the (--S)-power law, is very evident. The high wave-number limit of 
this subrange, ca. K = (e/v3)4, is estimated as follows. In isotropic turbulence the 
energy dissipation rate is on the order of e = 15vG/A;, where G i s  the mean-square 
velocity fluctuation and A, the dissipation scale. Along the centre-line of a tur- 
bulent jet and far from the nozzle, 3 2: (2D0U0/2)2 and A, N 0*006z, where Do is 
the nozzle diameter, U, the velocity at  the nozzle, and the distance from the 
nozzle. In the present case x = 20 em and DoU,/u = 54,000, giving K = 400 cm-I 
for the transition wave-number. The experimental data extended only to 
K = 50 cm-l and the capability of the system could not be significantly extended. 
None the less, with an improved system, a larger jet, and all factors optimized, 
the limit of the ( -:)-power regime and the beginning of the ( - 1)-power regime 
beyond should be accessible. 
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K (om-') 

FI~IJRE 5. The spectrum corrected for the effects of random noise and control volume size. 
The straight line represents a ( -$)-power relation. 

The upper limit of the ( - 1) -power subrange for the oil-smoke marker will be 
calculated for interest. The diffusivity of the smoke particles is estimated from 
the Stokes-Einstein formula with Cunningham correction, 

For particles of 0.5 x 10-4cm diameter and air at room temperature, B* = 
4 x 10-6cm2/sec7 a value comparable to  diffusivities in liquids. The Schmidt 
number of the particles in air is v / 9 *  = 0-15/(4 x lo4) = 3-8 x 104. The cut-off 
wave-number for the ( - 1) -power subrange is about 

K = ( € / V 9 * 2 ) f  = ( V / 9 * ) 4 ( € / V 3 ) % .  

Putting ( 4 ~ 3 ) %  = 400 and ~/9*  = 3 . 8 ~  lo4, we find K = 80,000. In  the present 
experimental system, a control volume small enough to resolve concentration 
fluctuations at  this level would contain an average of about 0.1 smoke particles. 
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Since the measured marker spectra were confined to the convection range of 

air mixing with air at  constant temperature (molecular diffusion cut-off with 
9 2: v), the data are completely interpretable as the concentration fluctuation 
spectrum of the nozzle air in the jet: 

where E ( K ) / I ' %  is in fact the spectral density of fluctuations in the volume fraction 
of nozzle air. 

Equation (33) is generally recommended as a basis for correcting measured 
spectra for the effects of control volume size. Normally these effects will become 
pronounced in the ( - $)-power or equivalent wave-number region, just as in the 
present work, and hence similar results should be expected. 

The total mean-square concentrationJluctuation of nozzle Jluid in a free je t  
In  $ 5  we showed how the scattered-light technique can be used to measure the 
total mean-square fluctuation, 7, in the concentration of material of the marked 
stream. The effects of control volume size on the measurement of can be cal- 
culated from the jet spectra described in $ 6 rather easily, because the attenuation 
of the spectral density function was effectively confined to wave-numbers be- 
ginning in the ( - %)-power convection equilibrium subregime. The complete 
data, to be presented elsewhere, give for this subrange 

E(K) = 0-40y2A-&4, 

where A is the longitudinal integral scale of the fluctuations in the concentration 
of nozzle air, in value 0.90 cm. On substituting this relation for the spectral den- 
sity function and (33) for the spectral attenuation factor, equation (30) yields 

KC 

N 1-O.4A-31 (1-exp (-0.12~20;))~-8d~ \ 
21 1 -0-4(Dv/A)flom(l -exp(-0.12y2})y*dy 

2: 1 - O-4(Dv/h)Q 

Y2 - 0 

(the extension of the integration range from K, to infinity gives Iittle error). 
Experiments were also carried out in which the effect of control volume size 

on 7 was measured directly a t  points on the jet axis 16, 24 and 32 nozzle radii 
from the nozzle mouth: shot noise from wave-numbers above K~ was removed by 
a 40,000 CIS low-pass filter, and the remainder was subtracted after calibrating 
it as a function of the mean phototube current. Now, when the integral effect of 
control volume size is small, as in the present work, the significant spectral 
contributions are concentratedin thehigher wave-number regions, and, if in these 
the ( - 9) -power law is obeyed, the integral attenuation factor is given by the 
generalization of (36), 

where the substitution of K for 0.4 as the numerical constant allows for variation 
in the shape of the spectrum. Figure 6u therefore shows a graph of the data after 

_ -  
9 2 / 7 2  = 1 - K(Dv/A)%, (37) 
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equation (37). A linear relation is indeed approximated with different values of 
the constant K :  at 16 nozzle radii downstream, K = 0.41; at 24 radii, 0.27; and, 
at 32 radii, 0.33. The first and last values are close to that in equation (377, 0.4, 
from the spectrum at 64 nozzle radii. 

0 04 

0.03 

3.02 

FIGURE 6. The effect of control volume size on the measured mean-square concentration 
fluctuation (a) after equation (37), bottom graph, and (6 )  after equation (40), top graph. 

While a Kolmogoroff equilibrium subrange is not universal, it  is quite common 
for the spectral density function to exhibit a power law behaviour in the same 
genera.1 range of wave-numbers: 

E ( K )  ?A-(n-l)~-n 

where n may be as high as 2. With this law for the spectral density and equation 
(33) for the attenuation factor, the solution of (30) for n = 2 is 

_ _  
9'/y2 = 1 - KD,/A, (38) 

where K is an experimental constant. 
The integral attenuation factor is also predictable from (23). Numerical solu- 

tions have been computed for control volumes with aspect ratios LID of 0-7, 
1.0 and 1-5. With equation (31) for the correlation coefficient,, the result €or aspect 
ratios of  0.7 and 1.0 is 
while with equation (32) 

_ _  
p 2 / ~ 2  = 1 - 0*525aDp-/A, (39) 

-- 
p2/yz = exp {- 0-525bDv/A), > 7 1 2 .  (40) 

The results for LID = 1-5 are analogous in form but with a numerical coefficient 
of 0.550. Figure 6b shows a graph of the experimental data after equation (40). 
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The values of the coefficient b at 16 and 32 nozzle radii downstream position, 
0.94 and 0.85, are in good accord with direct measurements of correlation coeffi- 
cients in jets, representing a reasonable mean of the longitudinal and transverse 
values (see, for example, our 1967 paper). The use of (39) gives slightlylesssatis- 
factory results. 

As a general basis for the correction of data on the total mean-square concen- 
tration fluctuation when the exact form of the spectrum is unknown, (40) appears 
to be the best compromise solution. 

7. Other measurements 
We have shown how the scattered-light technique is used to measure the mean, 

the total mean-square fluctuation, and the fluctuation spectrum of the concen- 
tration of material of the marked stream. The measurement of some other statis- 
tical parameters is now briefly described. 

Correlation coeficients 

If the incident light projection angle wi is made small and the system is set up to 
view with two phototubes through two slits two distinct segments of the incident 
beam, then the correlation can be measured between the volume-average con- 
centration fluctuations in two equal volumes V‘ and V” a distance < apart. When 
V’ and V“ are sufficiently small the correlation 7’7’’ is closely approximated. 
The criteria for sufficient smallness of control volume size may be appreciated 
from the effect on the spectrum. We have in this way made an extensive study of 
lateral correlation coefficients in jets. An analogue system (a correlation ampli- 
fier and random signal voltmeter) allowed the correlation coefficient 

__ 

~ _ -  c E y’”’”y”p)* 

to be read directly on a special scale. 
A systematic study of the effects of control volume size on the two-point corre- 

lation coefficient, coupled with a rigorous theoretical analysis, has not yet been 
carried out. However, an effect has been detected empirically and the empirical 
correction may accordingly be applied until a better procedure is available. 
Consider the data on the symmetrical lateral coefficient in the free jet (figure 7,  
top three curves). Over most of the range the coefficient is a linear function of 
the centre-to-centre separation distance. Extrapolation of the straight lines to 
the ordinate C = 1 gives a constant intercept on the abscissa, el = 1-5mm, 
independent of axial position in the jet. The true correlation should, however, 
be a simple curve extrapolating to c = 0 at C = 1. The most obvious explanation 
of the difference is that the effective separation distance is not the measured 
centre-to-centre distance, but that distance minus a displacement error el. If 
so, the magnitude of should be consistent with the control volume length L; 
this was, significantly, 1-5mm. Figure 7, bottom curve, shows the same data 
corrected and normalized. Complete data, including large separation distances, 
are given in our 1967 paper. 
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---CIA 

- 5 (mm) 

FIGURE 7. The symmetrical lateral correlation coefficient as a function of the separation 
distance in a free jet. Solid curves, the raw data; dashed curve, the data corrected for the 
displacement error and normalized with respect to the axial integral scale of the concen- 
tration fluctuations. The axial positions siro are: 0.,40; Om, 56;  AA, 72. 

Longitudinal integral scale 

The longitudinal correlation coefficient is obtained from the spectrum through 
the well-known Fourier transform relation 

The longitudinal integral scale is 

The inverse Fourier transform is 

from which 

The last relation indicates a simple method for determining E(0) and A. At low 
enough wave-numbers, the one-dimensional spectrum is usually ‘white ’, i.e. 

If is measured within the white region by putting the phototube signal 
through a low-pass filter of white-noise bandwidth Af, a n d 7  is measured by 
putting the signal through a low-pass filter of bandwidth Af = a~~/271, then we 
get A directly from these two measurements. This is the most accurate method 
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for determining both A and E(0)  and we have used it extensively in our work on 
jets. If 7lqaf is no more than 5 to 10 yo of?, it is normally safe to assume that 
A f is in the w-hite part of the spectrum. 

Intermittency factor 

The intermittency factor is defined as the probability, prob (I' > 0 ) ,  that the 
instantaneous concentration of material of the marked stream is greater than 
zero at  a point. A system for measuring this factor has been developed and data 
on turbulent jets have been reported (Becker et al. 1965). 

Large control volumes 

From the discussion of the effects of control volume size it is evident that these 
can be turned to advantage: large control volumes giving e.g. a line or sheet 
sampling of space, can be utilized to study the properties of the spectrum and 
correlation functions. Sheet illumination has already been used to study the 
statistical properties of cross-sections of a diffusion plume (Becker et al. 1966). 

8. Conclusion 
It is evident that the scattered-light technique as so far developed is essentially 

a tool for investigating the convection ranges of the concentration fluctuation 
spectrum. It cannot give information about the mixing of gases in the spectral 
region where molecular diffusion is important, because marker sol particles do 
not portray gas behaviour at  this level. However, the Schmidt numbers of sol 
particles in gases are similar to those of liquid pairs in important cases of liquid 
mixing, and hence the marker sol behaviour in gas mizing may portray reasonably 
well certain cases of liquid mixing. 

This work was supported by the U.S. Army Research Office (Durham) under 
Grant no. DA-ARO(D)D-31-124-61-G55, Project no. 2013-E. 
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